Campbell Biology in Focus Correlation for AP® Biology Curriculum Framework

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
1 Introduction: Evolution and the Foundations of Biology	1–17	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 A: Change in the genetic makeup of a population over time is evolution. B: Organisms are linked by lines of descent from common ancestry. C: Life con- tinues to evolve within a changing environment. A: Growth, re- production and maintenance of the organization of living systems require free energy and matter. B: Growth, re- production and dy- namic homeostasis require that cells cre- ate and maintain in- ternal environments that are different from their external environments. A: Heritable infor- mation provides for continuity of life. A: Interactions within biological systems lead to com- plex properties. C: Naturally occurring diversity among and be- tween components within biological systems affects in- teractions with the environment. 	 1.A.1. Natural selection is a major mechanism of evolution. 1.A.2: Natural selection acts on phenotypic variations in populations. 1.A.3: Evolutionary change is also driven by random processes. 1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics. 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. 1.C.3: Populations of organisms continue to evolve. 2.A.1: All living systems require constant input of free energy. 2.A.2: Organisms capture and store free energy for use in biological processes. 2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. 2.B.1: Cell membranes are selectively permeable due to their structure. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics. 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes. 4.A.3: Interactions between external stimuli and regulated gene expression result in specialization of cells, tissues and organs. 4.C.4: The diversity of species within an ecosystem. 	LO 1.1 [See SP 1.5, 2.2] LO 1.2 [See SP 2.2, 5.3] LO 1.3 [See SP 2.2] LO 1.4 [See SP 5.3] LO 1.5 [See SP 7.1] LO 1.6 [See SP 1.4, 2.1] LO 1.7 [See SP 2.1] LO 1.8 [See SP 6.4] LO 1.9 [See SP 5.2] LO 1.10 [See SP 5.2] LO 1.11 [See SP 4.2] LO 1.12 [See SP 7.1] LO 1.13 [See SP 1.1, 2.1] LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 1.17 [See SP 3.1] LO 1.18 [See SP 5.3] LO 1.19 [See SP 5.3] LO 1.19 [See SP 1.1] LO 1.26 [See SP 5.3] LO 2.1 [See SP 6.2] LO 2.2 [See SP 6.2] LO 2.3 [See SP 6.4] LO 2.4 [See SP 6.2] LO 2.5 [See SP 6.2] LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 4.1] LO 2.9 [See SP 1.4, 3.1] LO 2.10 [See SP 1.4, 3.1] LO 2.10 [See SP 1.4, 3.1] LO 2.11 [See SP 1.4, 3.1] LO 2.13 [See SP 6.2] LO 3.2 [See SP 4.1] LO 3.3 [See SP 6.4] LO 3.4 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.5 [See SP 6.4] LO 3.12 [See SP 6.4] LO 3.14 [See SP 6.3] LO 3.15 [See SP 6.3] LO 3.17 [See SP 6.3] LO 3.17 [See SP 1.2]	 Graphical analysis of allele frequencies in a population 5 Application of the Hardy-Weinberg equilibrium equation 1, 2, 5, 9, 10, 13, 369, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415 Sickle-cell disease 58, 288, 414, 501 Peppered moth 10 DDT resistance in insects 861, 897 Artificial selection 13, 15, 17, 371, 611 Loss of genetic diversity within a crop species 883, 884, 885, 886, 887, 888, 889, 890, 891 Overuse of antibiotics 374 Analysis of sequence data sets 284 Analysis of sequence data sets 284, 389, 390, 391, 392, 394, 395, 396, 397, 398, 447, 470, 486, 487, 488, 489, 490, 496, 497, 504, 505, 513, 531, 534, 543, 726 Construction of phylogenetic trees based on sequence data 10, 384, 385, 390 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91, 97, 98 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92, 147, 484 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 89, 92 Number of heart chambers in animals 645, 687, 688, 689, 690 Absence of legs in some sea mammals 543, 375, 377 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) 19 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galapagos) 9, 10, 399 Krebs cycle 139, 140, 141, 142, 143, 144, 145, 146, 147, 151, 152 Glycolysis 139, 140, 141, 142, 143, 144, 145, 146, 147, 151, 152

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
1 Introduction: Evolution and the Foundations of Biology (continued)	1–17				LO 4.4 [See SP 6.4] LO 4.5 [See SP 6.2] LO 4.6 [See SP 1.4] LO 4.7 [See SP 1.3] LO 4.25 [See SP 6.1] LO 4.26 [See SP 6.4] LO 4.27 [See SP 6.4]	 Seasonal reproduction in animals and plants 731 Life history strategy (biennial plants, reproductive diapause) 839 Change in the producer level can affect the number and size of other trophic levels. 499, 866, 867, 870, 872, 876 Change in energy resources levels such as sunlight can affect the number and size of the trophic levels. 866, 867, 868 NADP⁺ in photosynthesis 159, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Okygen in cellular respiration 3 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Cells of the alveoli 703 Cells of the villi 674 Microvilli 72, 87 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Degradation 667 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Genetically modified foods 611, 613 Cloned animals 262, 263, 264, 265, 307, 308, 321, 322 Sickle-cell disease 58, 288, 414, 501 X-linked color blindness 233 Trisomy 21/Down syndrome 242 Klinefelter syndrome 241 Reproduction issues 737, 748, 841 Sex-linked genes reside on sex chromosomes (X in humans) 194, 195, 232, 233 In mammals and flies, the Y chromosome is very small and carries few genes. 232, 234 In mammals and flies, the Y chromosome is very small and carries few genes. 232, 234 In mammals and flies, the Y chromosome is very small and carries few genes. 232, 234 In mammals and flies, the Y chromosome is

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one			
UNIT 1	UNIT 1 Chemistry and Cells, pg. 18								
2 The Chemical Context of Life	19–39	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 4: Biologi- cal systems inter- act, and these systems and their interactions possess complex properties	 1.C: Life continues to evolve within a chang- ing environment. 2.A: Growth, reproduc- tion and maintenance of the organization of liv- ing systems require free energy and matter. 4.A: Interactions within biological systems lead to complex properties. 	 1.C.3: Populations of organisms continue to evolve. 2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. 4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule. 	LO 1.25 [See SP 1.2] LO 1.26 [See SP 5.3] LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 4.1] LO 2.9 [See SP 1.1, 1.4] LO 4.1 [See SP 7.1] LO 4.2 [See SP 1.3] LO 4.3 [See SP 6.1, 6.4]	 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) 19 Emergent diseases 332, 333, 334, 335, 337, 339, 340, 341 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773 Cohesion 30 Adhesion 31 High specific heat capacity 31, 58 Universal solvent supports reactions 33 Heat of vaporization 31 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Cells of the alveoli 703 Cells of the villi 674 Microvilli 72, 87 			
3 Carbon and the Molecular Diversity of Life	40–65	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 2.A: Growth, reproduction and maintenance of the organization of living systems require free energy and matter. 3.A: Heritable information provides for continuity of life. 4.A: Interactions within biological systems lead to complex properties. 4.B: Competition and cooperation are important aspects of biological systems. 	 2.A.2: Organisms capture and store free energy for use in biological processes. 2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. 3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule. 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes. 4.B.1: Interactions between molecules affect their structure and function. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter. 	LO 2.4 [See SP 1.4, 3.1] LO 2.5 [See SP 6.2] LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 4.1] LO 2.9 [See SP 1.1, 1.4] LO 3.12 [See SP 1.1, 7.2] LO 3.13 [See SP 3.1] LO 3.14 [See SP 2.2]	 NADP⁺ in photosynthesis 159, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Cohesion 30 Adhesion 31 High specific heat capacity 31, 58 Universal solvent supports reactions 33 Heat of vaporization 31 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Cells of the alveoli 703 Cells of the villi 674 Microvilli 72, 87 Sickle-cell disease 58, 288, 414, 501 X-linked color blindness 233 Trisomy 21/Down syndrome 242 Klinefelter syndrome 241 Reproduction issues 737, 748, 841 			

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
4 A Tour of the Cell	66–93	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 B: Organisms are linked by lines of de- scent from common ancestry. A: Growth, reproduc- tion and maintenance of the organization of liv- ing systems require free energy and matter. B: Growth, repro- duction and dynamic homeostasis require that cells create and maintain internal envi- ronments that are differ- ent from their external environments. C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic ho- meostasis. A: Heritable informa- tion provides for conti- nuity of life. D: Cells communicate by generating, trans- mitting and receiving chemical signals. C: Naturally occurring diversity among and between components within biological sys- tems affects interactions 	 B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organ- isms today. A.1: All living systems require constant input of free energy. A.2: Organisms capture and store free energy for use in biological processes. A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. B.1: Cell membranes are selectively permeable due to their structure. B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. C.1: Organisms use feedback mecha- nisms to maintain their internal en- vironments and respond to external environmental changes. A.1: DNA, and in some cases RNA, is the primary source of heritable information. D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. C.1: Variation in molecular units provides cells with a wider range of functions. 	LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 2.1 [See SP 6.2] LO 2.2 [See SP 6.4] LO 2.3 [See SP 6.4] LO 2.4 [See SP 1.4, 3.1] LO 2.5 [See SP 6.2] LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 1.1, 1.4] LO 2.10 [See SP 1.4, 3.1] LO 2.11 [See SP 1.4, 3.1] LO 2.13 [See SP 6.2] LO 2.14 [See SP 1.4] LO 2.15 [See SP 6.1] LO 2.16 [See SP 7.2] LO 2.17 [See SP 6.4] LO 2.19 [See SP 6.4] LO 2.19 [See SP 6.4] LO 2.19 [See SP 6.4] LO 3.1 [See SP 6.5] LO 3.2 [See SP 6.4] LO 3.3 [See SP 1.2] LO 3.4 [See SP 6.4] LO 3.5 [See SP 6.4] LO 3.5 [See SP 6.4] LO 3.5 [See SP 6.4] LO 3.4 [See SP 6.2] LO 3.35 [See SP 6.2] LO 4.22 [See SP 6.2]	 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92, 132 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 89, 92 Krebs cycle 139, 140, 141, 142, 143, 144, 145, 146, 147 Glycolysis 139, 140, 141, 142, 143, 144, 145, 146, 147 Calvin cycle 159, 163, 164, 165, 166, 167, 168, 169, 171 Fermentation 150 Endothermy (the use of thermal energy generated by metabolism to maintain homeostatic body temperatures) 644, 645, 646, 647, 648, 649, 650, 651 Ectothermy (the use of external thermal energy to help regulate and maintain body temperature) 644, 645 Seasonal reproduction in animals and plants 731 Change in the producer level can affect the number and size of other trophic levels. 499, 866, 867, 870, 872, 876 Change in energy resources levels such as sunlight can affect the number and size of other trophic levels. 499, 866, 867, 870, 872, 876 Change in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Oxygen in cellular respiration 33 Heat of vaporization 31 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Cells of the alveoli 703 Cells of

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
4 A Tour of the Cell (continued)	66–93					 Operons in gene regulation 295, 296 Temperature regulation in animals 644, 645, 646, 647, 648, 649, 650, 651 Plant responses to water limitations 577, 591, 592, 625, 634, 635 Lactation in mammals 649, 650, 747 Ripening of fruit 620, 625 Diabetes mellitus in response to decreased insulin 680 Dehydration in response to decreased antiduuretic hormone (ADH) 661 Graves' disease (hyperthyroidism) 651 Blood clotting 697 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Immune cells interact by cell-cell contact, antigen-presenting cells (APCs), helper T cells and killer T cells. [See also 2.D.4] 717, 718, 719, 721, 722, 723 Plasmodesmata between plant cells that allow material to be transported from cell to cell 73, 89 Neurotransmitters 66, 648, 649, 650, 752, 753, 754, 755, 756, 757, 758, 759, 761, 764 Plant immune response 637 Morphogens in embryonic development 742, 743, 744, 745, 746, 747, 748 Insulin 680 Human growth hormone Thyroid hormones 650, 651, 653 Testosterone 111, 739 Estrogen 650 Different types of hemoglobin 216, 643, 695, 696 Chlorophylls 157, 160, 161, 162, 163, 166, 171

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
5 Membrane Transport and Cell Signaling	94–115	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 B: Organisms are linked by lines of de- scent from common ancestry. B: Growth, repro- duction and dynamic homeostasis require that cells create and maintain internal envi- ronments that are differ- ent from their external environments. D: Cells communicate by generating, trans- mitting and receiving chemical signals. 	 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 2.B.1: Cell membranes are selectively permeable due to their structure. 2.B.2: Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes. 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 	LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 2.10 [See SP 1.4, 3.1] LO 2.11 [See SP 1.1, 7.1, 7.2] LO 2.12 [See SP 1.4] LO 3.31 [See SP 7.2] LO 3.32 [See SP 3.1] LO 3.33 [See SP 1.4] LO 3.34 [See SP 6.2] LO 3.35 [See SP 1.1]	 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 76, 77, 78, 79, 80, 81, 82, 89, 92 Glucose transport 167 Na⁺/K⁺ transport 136 DNA repair mechanisms 258 Immune cells interact by cell-cell contact, antigen-presenting cells (APCs), helper T cells and killer T cells. [See also 2.D.4] 717, 718, 719, 721, 722, 723 Plasmodesmata between plant cells that allow material to be transported from cell to cell. 73, 89 Neurotransmitters 66, 648, 649, 650, 752, 753, 754, 755, 756, 757, 758, 759, 761, 764 Plant immune response 637 Morphogens in embryonic development 742, 743, 744, 745, 746, 747, 748 Insulin 680 Thyroid hormones 650, 651, 653 Testosterone 111, 739 Estrogen 650
6 An Introduction to Metabolism	116–134	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 2.A: Growth, reproduction and maintenance of the organization of living systems require free energy and matter. 4.B: Competition and cooperation are important aspects of biological systems. 	2.A.1: All living systems require constant input of free energy.4.B.1: Interactions between molecules affect their structure and function.	LO 2.1 [See SP 6.2] LO 2.2 [See SP 6.1] LO 2.3 [See SP 6.4] LO 4.17 [See SP 5.1]	 Krebs cycle 139, 140, 141, 142, 143, 144, 145, 146, 147 Glycolysis 139, 140, 141, 142, 143, 144, 145, 146, 147 Calvin cycle 159, 163, 164, 165, 166, 167, 168, 169, 171 Fermentation 150 Endothermy (the use of thermal energy generated by metabolism to maintain homeostatic body temperatures) 644, 645, 646, 647, 648, 649, 650, 651 Ectothermy (the use of external thermal energy to help regulate and maintain body temperature) 644, 645 Seasonal reproduction in animals and plants 731 Change in the producer level can affect the number and size of other trophic levels. 499, 866, 867, 870, 872, 876 Change in energy resources levels such as sunlight can affect the number and size of the trophic levels. 866, 867, 868

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
7 Cellular Respiration and Fermentation	135–154	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis	2.A: Growth, reproduc- tion and maintenance of the organization of liv- ing systems require free energy and matter.	2.A.2: Organisms capture and store free energy for use in biological processes.	LO 2.4 [See SP 1.4, 3.1] LO 2.5 [See SP 6.2]	 NADP⁺ in photosynthesis 159, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171
8 Photosynthesis	155–173	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis	2.A: Growth, reproduc- tion and maintenance of the organization of liv- ing systems require free energy and matter.	2.A.2: Organisms capture and store free energy for use in biological processes.	LO 2.4 [See SP 1.4, 3.1] LO 2.5 [See SP 6.2]	 NADP⁺ in photosynthesis 159, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171
9 The Cell Cycle	174–190	Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	3.A: Heritable information provides for continuity of life.	3.A.2: In eukaryotes, heritable informa- tion is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization.	LO 3.7 [See SP 1.2] LO 3.9 [See SP 6.2] LO 3.10 [See SP 7.1] LO 3.11 [See SP 5.3]	 Mitosis-promoting factor (MPF) 185 Action of platelet-derived growth factor (PDGF) 186 Cancer results from disruptions in cell cycle control 186, 187, 188, 325, 326, 327
UNIT 2	Genetic	s pg. 191				
10 Meiosis and Sexual Life Cycles	192–205	Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	3.A: Heritable information provides for continuity of life.3.C: The processing of genetic information is imperfect and is a source of genetic variation.	 3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization. 3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 3.C.1: Changes in genotype can result in changes in phenotype. 3.C.2: Biological systems have multiple processes that increase genetic variation. 	LO 3.7 [See SP 1.2] LO 3.9 [See SP 6.2] LO 3.10 [See SP 7.1] LO 3.11 [See SP 5.3] LO 3.12 [See SP 1.1, 7.2] LO 3.13 [See SP 3.1] LO 3.14 [See SP 2.2] LO 3.24 [See SP 6.4, 7.2] LO 3.25 [See SP 1.1] LO 3.26 [See SP 7.2] LO 3.27 [See SP 7.2] LO 3.28 [See SP 6.2]	 Mitosis-promoting factor (MPF) 185 Action of platelet-derived growth factor (PDGF) 186 Cancer results from disruptions in cell cycle control 186, 187, 188, 325, 326, 327 Sickle-cell disease 58, 288, 414, 501 X-linked color blindness 233 Trisomy 21/Down syndrome 242 Klinefelter syndrome 241 Reproduction issues 737, 748, 841 Antibiotic resistance mutations 469 Sickle-cell disorder and heterozygote advantage 414

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
11 Mendel and the Gene Idea	206–227	Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 3.A: Heritable information provides for continuity of life. 3.C: The processing of genetic information is imperfect and is a source of genetic variation. 	 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics. 3.C.1: Changes in genotype can result in changes in phenotype. 	LO 3.1 [See SP 6.5] LO 3.2 [See SP 4.1] LO 3.3 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.5 [See SP 6.4] LO 3.6 [See SP 6.4] LO 3.12 [See SP 6.4] LO 3.13 [See SP 3.1] LO 3.14 [See SP 2.2] LO 3.15 [See SP 6.5] LO 3.16 [See SP 6.3] LO 3.17 [See SP 1.2] LO 3.24 [See SP 6.4, 7.2] LO 3.25 [See SP 1.1] LO 3.26 [See SP 7.2]	 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Sickle-cell disease 58, 288, 406, 414, 501 X-linked color blindness 233 Trisomy 21/Down syndrome 242 Klinefelter syndrome 241 Reproduction issues 737, 748, 841 Sex-linked genes reside on sex chromosomes (X in humans) 194, 195, 232, 233 In mammals and flies, the Y chromosome is very small and carries few genes 232, 234 In mammals and flies, females are XX and males are XY; as such, X-linked recessive traits are always expressed in males 233, 234 Some traits are sex limited, and expression depends on the sex of the individual, such as milk production in female mammals and pattern baldness in males 220, 221, 232, 233, 234, 235, 649, 650, 747 Antibiotic resistance mutations 469 Sickle-cell disorder and heterozygote advantage 414
12 The Chromosomal Basis of Inheritance	228–244	Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 3.A: Heritable information provides for continuity of life. 3.B: Expression of genetic information involves cellular and molecular mechanisms. 3.C: The processing of genetic information is imperfect and is a source of genetic variation. 	 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 3.C.1: Changes in genotype can result in changes in phenotype. 	LO 3.1 [See SP 6.5] LO 3.2 [See SP 4.1] LO 3.3 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.5 [See SP 6.4] LO 3.6 [See SP 6.4] LO 3.12 [See SP 1.1, 7.2] LO 3.13 [See SP 3.1] LO 3.14 [See SP 2.2] LO 3.15 [See SP 6.5] LO 3.16 [See SP 6.3] LO 3.17 [See SP 6.2] LO 3.22 [See SP 6.4, 7.2] LO 3.24 [See SP 6.4, 7.2] LO 3.26 [See SP 7.2]	 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Sickle-cell disease 58, 288, 414, 501 X-linked color blindness 233 Trisomy 21/Down syndrome 242 Klinefelter syndrome 241 Reproduction issues 737, 748, 841 Sex-linked genes reside on sex chromosomes (X in humans). 194, 195, 232, 233 In mammals and flies, the Y chromosome is very small and carries few genes. 232, 234 Illustrative examples continued on next page

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
12 The Chromosomal Basis of Inheritance (continued)	228–244					 In mammals and flies, females are XX and males are XY; as such, X-linked recessive traits are always expressed in males. 229, 231, 233, 234, 235 Some traits are sex limited, and expression depends on the sex of the individual, such as milk production in female mammals and pattern baldness in males. 220, 221, 232, 233, 234, 235, 649, 650, 747 Cytokines regulate gene expression to allow for cell replication and division. 176, 178, 179, 181, 183, 184, 198, 199, 200 Ethylene levels cause changes in the production of different enzymes, allowing fruits to ripen. 620, 625 Seed germination and gibberellin 600, 602, 603, 604, 605, 606, 623, 624 Changes in p53 activity can result in cancer. 327 HOX genes and their role in development 361 Antibiotic resistance mutations 469 Sickle-cell disorder and heterozygote advantage 414
13 The Molecular Basis of Inheritance	245–267	Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 3.A: Heritable information provides for continuity of life. 3.B: Expression of genetic information involves cellular and molecular mechanisms. 3.C: The processing of genetic information is imperfect and is a source of genetic variation. 	 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 3.B.1: Gene regulation results in differential gene expression, leading to cell specialization. 3.C.1: Changes in genotype can result in changes in phenotype. 3.C.2: Biological systems have multiple processes that increase genetic variation. 3.C.3: Viral replication results in genetic variation and viral infection can introduce genetic variation into the hosts. 	LO 3.1 [See SP 6.5] LO 3.2 [See SP 4.1] LO 3.3 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.5 [See SP 6.4] LO 3.5 [See SP 6.4] LO 3.12 [See SP 1.1, 7.2] LO 3.13 [See SP 3.1] LO 3.14 [See SP 2.2] LO 3.18 [See SP 7.1] LO 3.19 [See SP 7.1] LO 3.20 [See SP 6.2] LO 3.21 [See SP 6.4, 7.2] LO 3.25 [See SP 1.1] LO 3.26 [See SP 7.2] LO 3.27 [See SP 7.2] LO 3.28 [See SP 6.2] LO 3.29 [See SP 6.2] LO 3.29 [See SP 6.2] LO 3.30 [See SP 1.4]	 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Sickle-cell disease 58, 288, 414, 501 X-linked color blindness 233 Trisomy 21/Down syndrome 242 Klinefelter syndrome 241 Reproduction issues 737, 748, 841 Promoters 275, 296, 297, 300, 301, 302, 303 Terminators 300 Enhancers 300, 301, 302, 303 Antibiotic resistance mutations 469 Sickle-cell disorder and heterozygote advantage 58, 414 Transduction in bacteria 468

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
14 Gene Expression: From Gene to Protein	268–292	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 3.A: Heritable information provides for continuity of life. 3.C: The processing of genetic information is imperfect and is a source of genetic variation. 	 2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics. 3.C.2: Biological systems have multiple processes that increase genetic variation. 	LO 2.31 [See SP 7.2] LO 2.32 [See SP 1.4] LO 2.33 [See SP 6.1] LO 2.34 [See SP 7.1] LO 3.1 [See SP 6.5] LO 3.2 [See SP 4.1] LO 3.3 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.5 [See SP 6.4] LO 3.6 [See SP 6.4] LO 3.15 [See SP 6.4] LO 3.16 [See SP 6.3] LO 3.17 [See SP 1.2] LO 3.27 [See SP 7.2] LO 3.28 [See SP 6.2]	 Morphogenesis of fingers and toes 315, 375, 542, 543 Immune function 711, 712, 713, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724 Flower development 598, 599, 600, 603 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Sex-linked genes reside on sex chromosomes (X in humans). 194, 195, 232, 233 In mammals and flies, the Y chromosome is very small and carries few genes. 232, 234 Some traits are sex limited, and expression depends on the sex of the individual, such as milk production in female mammals and pattern baldness in males. 220, 221, 232, 233, 234, 235, 649, 650, 747
15 Regulation of Gene Expression	293–310	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 2.C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regula- tion and coordination. 3.A: Heritable infor- mation provides for continuity of life. 3.B: Expression of genetic information involves cellular and molecular mechanisms. 4.B: Competition and cooperation are important aspects of biological systems. 4.C: Naturally occurring diversity among and between components within biological sys- tems affects interactions with the environment. 	 2.C.2: Organisms respond to changes in their external environments. 2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.A.2: In eukaryotes, heritable information. 3.A.2: In eukaryotes, heritable information. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.A.2: In eukaryotes, heritable information. 3.A.2: In eukaryotes, heritable information. 3.B.1: Gene regulation results in differential gene expression, leading to cell specialization. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 4.B.1: Interactions between molecules affect their structure and function. 4.C.2: Environmental factors influence the expression of the genotype in an organism. 	LO 2.21 [See SP 4.1] LO 2.31 [See SP 7.2] LO 2.32 [See SP 1.4] LO 2.33 [See SP 6.1] LO 2.34 [See SP 6.1] LO 3.1 [See SP 6.5] LO 3.2 [See SP 4.1] LO 3.3 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.5 [See SP 6.4] LO 3.6 [See SP 6.4] LO 3.7 [See SP 6.2] LO 3.10 [See SP 7.1] LO 3.18 [See SP 7.1] LO 3.19 [See SP 7.1] LO 3.20 [See SP 6.2] LO 3.21 [See SP 6.2] LO 3.23 [See SP 6.2] LO 3.23 [See SP 1.4] LO 3.23 [See SP 1.4] LO 4.17 [See SP 6.2] LO 4.23 [See SP 6.4]	 Photoperiodism and phototropism in plants 618, 619, 626, 627, 628, 630, 631, 632, 633 Hibernation and migration in animals 807, 842, 890 Chemotaxis in bacteria, sexual reproduction in fungi 196, 506, 511 Nocturnal and diurnal activity: circadian rhythms 629, 771, 774, 775, 792 Morphogenesis of fingers and toes 315, 375, 542, 543 Immune function 711, 712, 713, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724 Flower development 598, 599, 600, 603 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Sex determination in reptiles 731

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
16 Development, Stem Cells, and Cancer	311–329	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes Big Idea 4: Biologi- cal systems interact, and their interac- tions possess com- plex properties	 2.A: Growth, reproduction and maintenance of the organization of living systems require free energy and matter. 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 3.A: Heritable information provides for continuity of life. 3.B: Expression of genetic information involves cellular and molecular mechanisms. 3.C: The processing of genetic information is imperfect and is a source of genetic variation. 4.A: Interactions within biological systems lead to complex properties. 	 2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. 2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.B.1: Gene regulation results in differential gene expression, leading to cell specialization. 3.C.1: Changes in genotype can result in changes in phenotype. 4.A.3: Interactions between external stimuli and regulated gene expression result in specialization of cells, tissues and organs. 	LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 4.1] LO 2.9 [See SP 1.1, 1.4] LO 2.31 [See SP 7.2] LO 2.32 [See SP 1.4] LO 2.33 [See SP 6.1] LO 2.34 [See SP 6.1] LO 3.1 [See SP 6.5] LO 3.2 [See SP 4.1] LO 3.3 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.5 [See SP 6.4] LO 3.18 [See SP 7.1] LO 3.19 [See SP 7.1] LO 3.20 [See SP 6.2] LO 3.21 [See SP 6.4] LO 3.21 [See SP 6.4] LO 3.24 [See SP 6.4, 7.2] LO 3.25 [See SP 1.1] LO 3.26 [See SP 7.2] LO 4.7 [See SP 1.3]	 Cohesion 30 Adhesion 31 High specific heat capacity 31, 58 Universal solvent supports reactions 33 Heat of vaporization 31 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Cells of the alveoli 703 Cells of the villi 674 Microvilli 72, 87 Morphogenesis of fingers and toes 315, 375, 542, 543 Immune function 711, 712, 713, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724 Flower development 598, 599, 600, 603 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 52, 102, 104, 105 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Promoters 275, 296, 297, 300, 301, 302, 303 Antibiotic resistance mutations 469 Sickle-cell disorder and heterozygote advantage 414
17 Viruses 330	330–342	Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	3.A: Heritable information provides for continuity of life.3.C: The processing of genetic information is imperfect and is a source of genetic variation.	 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.A.4: The inheritance pattern of many traits cannot be explained by simple Mendelian genetics. 3.C.1: Changes in genotype can result in changes in phenotype. 3.C.3: Viral replication results in genetic variation and viral infection can introduce genetic variation into the hosts. 	LO 3.1 [See SP 6.5] LO 3.2 [See SP 4.1] LO 3.3 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.5 [See SP 6.4] LO 3.6 [See SP 6.4] LO 3.15 [See SP 6.5] LO 3.16 [See SP 6.3] LO 3.17 [See SP 1.2] LO 3.24 [See SP 6.4, 7.2] LO 3.25 [See SP 1.1] LO 3.26 [See SP 7.2] LO 3.29 [See SP 6.2] LO 3.30 [See SP 1.4]	 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Sex-linked genes reside on sex chromosomes (X in humans). 194, 195, 232, 233 In mammals and flies, the Y chromosome is very small and carries few genes. 232, 234 Some traits are sex limited, and expression depends on the sex of the individual, such as milk production in female mammals and pattern baldness in males. 220, 221, 232, 233, 234, 235, 649, 650, 747

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
	330–342					 Antibiotic resistance mutations 469 Sickle-cell disorder and heterozygote advantage 414 Transduction in bacteria 468 Transposons present in incoming DNA 350, 351
18 Genomes and Their Evolution	343–363	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 3.C: The processing of genetic information is imperfect and is a source of genetic variation. 	2.E.1: Timing and coordination of specific events are necessary for the normal devel- opment of an organism, and these events are regulated by a variety of mechanisms. 3.C.2: Biological systems have multiple processes that increase genetic variation.	LO 2.31 [See SP 7.2] LO 2.32 [See SP 1.4] LO 2.33 [See SP 6.1] LO 2.34 [See SP 7.1] LO 3.27 [See SP 7.2] LO 3.28 [See SP 6.2]	 Morphogenesis of fingers and toes 315, 375, 542, 543 Immune function 711, 712, 713, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724 Flower development 598, 599, 600, 603
UNIT 3	Evolutio	n, pg. 364				
19 Descent with Modification	365–380	Big Idea 1: The process of evolution drives the diversity and unity of life	 A: Change in the genetic makeup of a population over time is evolution. B: Organisms are linked by lines of de- scent from common ancestry. C: Life continues to evolve within a chang- ing environment. D: The origin of living systems is explained by natural processes. 	 1.A.1. Natural selection is a major mechanism of evolution. 1.A.3: Evolutionary change is also driven by random processes. 1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics. 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. 1.C.3: Populations of organisms continue to evolve. 1.D.1: There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence. 1.D.2: Scientific evidence from many different disciplines supports models of the origin of life. 	LO 1.1 [See SP 1.5, 2.2] LO 1.2 [See SP 2.2, 5.3] LO 1.3 [See SP 2.2] LO 1.6 [See SP 1.4, 2.1] LO 1.7 [See SP 2.1] LO 1.7 [See SP 6.4] LO 1.9 [See SP 5.3] LO 1.10 [See SP 5.2] LO 1.11 [See SP 4.2] LO 1.12 [See SP 7.1] LO 1.13 [See SP 1.1, 2.1] LO 1.18 [See SP 5.3] LO 1.19 [See SP 5.3] LO 1.19 [See SP 1.1] LO 1.18 [See SP 5.3] LO 1.26 [See SP 1.2] LO 1.26 [See SP 1.2] LO 1.27 [See SP 1.2] LO 1.28 [See SP 3.3] LO 1.29 [See SP 6.3] LO 1.30 [See SP 6.5] LO 1.31 [See SP 4.4] LO 1.32 [See SP 4.1]	 Application of the Hardy-Weinberg equilibrium equation 1, 2, 5, 9, 10, 13, 369, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415 Analysis of sequence data sets 284 Analysis of phylogenetic trees 10, 340, 358, 370, 377, 381, 383, 384, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 447, 470, 486, 487, 488, 489, 490, 496, 497, 504, 505, 513 Number of heart chambers in animals 685, 687, 688, 689, 690 Absence of legs in some sea mammals 543, 375, 377 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) 19 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
20 Phylogeny	381–398	Big Idea 1: The process of evolution drives the diversity and unity of life	 1.A: Change in the genetic makeup of a population over time is evolution. 1.B: Organisms are linked by lines of descent from common ancestry. 1.C: Life continues to evolve within a chang- ing environment. 	 1.A.2: Natural selection acts on phenotypic variations in populations. 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. 1.C.3: Populations of organisms continue to evolve. 	LO 1.4 [See SP 5.3] LO 1.5 [See SP 7.1] LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 1.17 [See SP 3.1] LO 1.18 [See SP 5.3] LO 1.19 [See SP 1.1] LO 1.25 [See SP 1.2] LO 1.26 [See SP 5.3]	 Sickle-cell disease 58, 288, 406, 414, 501 Peppered moth 10 DDT resistance in insects 861, 897 Artificial selection 13, 15, 17, 371, 611 Loss of genetic diversity within a crop species 883, 884, 885, 886, 887, 888, 889, 890, 891 Overuse of antibiotics 374 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 76, 77, 78, 79, 80, 81, 82, 89, 92 Number of heart chambers in animals 685, 687, 688, 689, 690 Absence of legs in some sea mammals 543, 375, 377 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) 19 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773
21 The Evolution of Populations	399–417	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 A: Change in the genetic makeup of a population over time is evolution. B: Organisms are linked by lines of de- scent from common ancestry. C: Life continues to evolve within a chang- ing environment. A: Heritable infor- mation provides for continuity of life. C: The processing of genetic informa- tion is imperfect and is a source of genetic variation. 	 1.A.1. Natural selection is a major mechanism of evolution. 1.A.2: Natural selection acts on phenotypic variations in populations. 1.A.3: Evolutionary change is also driven by random processes. 1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics. 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 1.C.3: Populations of organisms continue to evolve. 3.A.3: The chromosomal basis of inheritance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 3.C.2: Biological systems have multiple processes that increase genetic variation. 	LO 1.1 [See SP 1.5, 2.2] LO 1.2 [See SP 2.2, 5.3] LO 1.3 [See SP 2.2] LO 1.4 [See SP 5.3] LO 1.5 [See SP 7.1] LO 1.6 [See SP 1.4, 2.1] LO 1.7 [See SP 2.1] LO 1.8 [See SP 6.4] LO 1.9 [See SP 5.3] LO 1.10 [See SP 5.2] LO 1.11 [See SP 4.2] LO 1.12 [See SP 7.1] LO 1.13 [See SP 1.1, 2.1] LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 1.25 [See SP 1.2]	 Application of the Hardy-Weinberg equilibrium equation 1, 2, 5, 9, 10, 13, 369, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415 Sickle-cell disease 58, 288, 414, 501 Peppered moth 10 DDT resistance in insects 861, 897 Artificial selection 13, 15, 17, 371, 611 Loss of genetic diversity within a crop species 883, 884, 885, 886, 887, 888, 889, 890, 891 Analysis of sequence data sets 284 Analysis of phylogenetic trees 10, 340, 358, 370, 377, 381, 383, 384, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 447, 470, 486, 487, 488, 489, 490, 496, 497, 504, 505, 513 Construction of phylogenetic trees based on sequence data 383, 388, 389, 390 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92 Linear chromosomes 5, 178, 179, 180, 181, 183 <i>Illustrative examples continued on next page</i>

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
21 The Evolution of Populations (continued)	399–417				LO 1.26 [See SP 5.3] LO 3.12 [See SP 1.1, 7.2] LO 3.13 [See SP 3.1] LO 3.14 [See SP 2.2] LO 3.27 [See SP 7.2] LO 3.28 [See SP 6.2]	 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 89, 92 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) 19 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773 Sickle-cell disease 58, 288, 406, 414, 501 X-linked color blindness 233 Trisomy 21/Down syndrome 242 Klinefelter syndrome 241 Reproduction issues 737, 748, 841
22 The Origin of Species	418–435	Big Idea 1: The process of evolution drives the diversity and unity of life	 1.A: Change in the genetic makeup of a population over time is evolution. 1.B: Organisms are linked by lines of descent from common ancestry. 1.C: Life continues to evolve within a changing environment. 	 1.A.3: Evolutionary change is also driven by random processes. 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. 1.C.1: Speciation and extinction have oc- curred throughout the Earth's history. 1.C.2: Speciation may occur when two populations become reproductively iso- lated from each other. 1.C.3: Populations of organisms continue to evolve. 	LO 1.6 [See SP 1.4, 2.1] LO 1.7 [See SP 2.1] LO 1.8 [See SP 6.4] LO 1.17 [See SP 3.1] LO 1.18 [See SP 5.3] LO 1.19 [See SP 5.1] LO 1.20 [See SP 5.1] LO 1.21 [See SP 4.2] LO 1.22 [See SP 6.4] LO 1.23 [See SP 4.1] LO 1.24 [See SP 7.2] LO 1.25 [See SP 1.2] LO 1.26 [See SP 5.3]	 Number of heart chambers in animals 685, 687, 688, 689, 690 Absence of legs in some sea mammals 543, 375, 377 Five major extinctions 447 Human impact on ecosystems and species extinction rates 824, 825, 826, 827, 828, 877, 878, 879, 883, 884, 885, 886, 887, 893, 896, 897, 898, 902, 903 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773
23 Broad Patterns of Evolution	436-456	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 A: Change in the genetic makeup of a population over time is evolution. B: Organisms are linked by lines of de- scent from common ancestry. C: Life continues to evolve within a chang- ing environment. D: The origin of living systems is explained by natural processes. C: The processing of genetic informa- tion is imperfect and is a source of genetic variation. 	 1.A.1. Natural selection is a major mechanism of evolution. 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 1.C.1: Speciation and extinction have occurred throughout the Earth's history. 1.C.3: Populations of organisms continue to evolve. 1.D.1: There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence. 1.D.2: Scientific evidence from many different disciplines supports models of the origin of life. 3.C.1: Changes in genotype can result in changes in phenotype. 	LO 1.1 [See SP 1.5, 2.2] LO 1.2 [See SP 2.2, 5.3] LO 1.3 [See SP 2.2] LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 1.20 [See SP 6.1] LO 1.21 [See SP 4.2] LO 1.25 [See SP 4.2] LO 1.26 [See SP 5.3] LO 1.27 [See SP 1.2] LO 1.28 [See SP 3.3] LO 1.29 [See SP 6.3] LO 1.30 [See SP 6.5] LO 1.31 [See SP 4.4] LO 1.32 [See SP 4.1]	 Application of the Hardy-Weinberg equilibrium equation 1, 2, 5, 9, 10, 13, 369, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 89, 92 Five major extinctions 447 Human impact on ecosystems and species extinction rates 549, 824, 825, 826, 827, 828, 877, 878, 879, 883, 884, 885, 886, 887, 893, 896, 897, 898, 902, 903 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) 19 Illustrative examples continued on next page

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
	436-456				LO 3.24 [See SP 6.4, 7.2] LO 3.25 [See SP 1.1] LO 3.26 [See SP 7.2]	 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773 Antibiotic resistance mutations 469 Sickle-cell disorder and heterozygote advantage 414
UNIT 4	The Evolu	utionary Histo	ry of Life, pg. 457	7		
24 Early Life and the Diversification of Prokaryotes	458-480	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 A: Change in the genetic makeup of a population over time is evolution. B: Organisms are linked by lines of de- scent from common ancestry. D: The origin of living systems is explained by natural processes. A: Growth, reproduc- tion and maintenance of the organization of liv- ing systems require free energy and matter. D: Growth and dy- namic homeostasis of a biological system are influenced by changes in the system's environment. E: Many biological processes involved in growth, reproduc- tion and dynamic homeostasis include temporal regulation and coordination. A: Heritable informa- tion provides for conti- nuity of life. D: Cells communicate by generating, trans- mitting and receiving chemical signals. 	 A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics. B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. D.1: There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence. D.2: Scientific evidence from many different disciplines supports models of the origin of life. A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. D.1: All biological systems from cells and organisms to populations, communities and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. A.1: DNA, and in some cases RNA, is the primary source of heritable information. D.3: Signal transduction pathways link signal reception with cellular response. D.4: Changes in signal transduction pathways can alter cellular response. 	LO 1.9 [See SP 5.3] LO 1.10 [See SP 5.2] LO 1.11 [See SP 4.2] LO 1.12 [See SP 7.1] LO 1.13 [See SP 1.1, 2.1] LO 1.17 [See SP 3.1] LO 1.18 [See SP 5.3] LO 1.19 [See SP 1.2] LO 1.27 [See SP 1.2] LO 1.28 [See SP 3.3] LO 1.29 [See SP 6.3] LO 1.30 [See SP 6.5] LO 1.31 [See SP 4.4] LO 1.32 [See SP 4.4] LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 4.1] LO 2.22 [See SP 1.1, 1.4] LO 2.22 [See SP 4.2, 7.2] LO 2.35 [See SP 4.2] LO 2.36 [See SP 4.2] LO 2.37 [See SP 6.5] LO 3.1 [See SP 6.5] LO 3.1 [See SP 6.2] LO 3.3 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.4 [See SP 6.4] LO 3.36 [See SP 6.4] LO 3.37 [See SP 6.1] LO 3.37 [See SP 6.1] LO 3.37 [See SP 6.1] LO 3.37 [See SP 6.4] LO 3.36 [See SP 6.1] LO 3.37 [See SP 6.2]	 Analysis of sequence data sets 284 Analysis of phylogenetic trees 10, 340, 358, 370, 377, 381, 383, 384, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 447, 470, 486, 487, 488, 489, 490, 496, 497, 504, 505, 513 Number of heart chambers in animals 685, 687, 688, 689, 690 Absence of legs in some sea mammals 543, 375, 377 Cohesion 30 Adhesion 31 High specific heat capacity 31, 58 Universal solvent supports reactions 33 Heat of vaporization 31 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Cells of the alveoli 703 Cells of the aveli 703 Cell density 186 Temperature 120, 644, 645, 646, 647, 873 Water availability 820, 821, 822, 823, 824, 825, 826, 827, 828, 829 Sunlight 6, 159, 160, 161, 162, 163, 164, 167, 168, 171 Symbiosis (mutualism, commensalism, parasitism) 475, 586, 845, 846, 850, 851 Predator-prey relationships 528, 751, 768, 841, 848, 853, 854 Water and nutrient availability temperature, salinity, pH 30, 31, 32, 33, 34, 35, 36 Water and nutrient availability 820, 821, 822, 823, 829 Food chains and food webs 853, 854, 855 Species diversity 549, 851, 852, 853, 856, 857, 858, 859, 860, 883 Population density 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 852, 853 Algal blooms 896 Circadian rhythms, or the physiological cycle of about 24 hours that is present in all eukaryotes and persists even in the absence of external cues 629, 631, 771, 773, 774, 775, 792 Diurnal/nocturnal and sleep/wake cycles 771, 774, 775, 792 Illustrative examples continued on next page

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
24 Early Life and the Diversification of Prokaryotes (continued)	458–480					 Visual displays in the reproductive cycle 195, 196, 333, 334, 335, 337, 498, 501, 506, 507, 511, 600, 737, 740, 742 Fruiting body formation in fungi, slime molds and certain types of bacteria 498 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 G protein-linked receptors 110 Ligand-gated ion channels 110 Receptor tyrosine kinases 112, 113 Ligand-gated ion channels 110 Diabetes, heart disease, neurological disease, autoimmune disease, cancer, cholera 680 Drugs (hypertensives, anesthetics, antihista- mines and birth control drugs) 775
25 The Origin and Diversification of Eukaryotes	481–503	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 B: Organisms are linked by lines of de- scent from common ancestry. C: Life continues to evolve within a chang- ing environment. A: Growth, reproduc- tion and maintenance of the organization of living systems require free energy and matter. B: Growth, repro- duction and dynamic homeostasis require that cells create and maintain internal envi- ronments that are differ- ent from their external environments. C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. A: Interactions within biological systems lead to complex properties. 	 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. 1.C.3: Populations of organisms continue to evolve. 2.A.1: All living systems require constant input of free energy. 2.A.2: Organisms capture and store free energy for use in biological processes. 2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions. 2.C.2: Organisms respond to changes in their external environments. 4.A.2: The structure and function of subcellular components, and their interac- tions, provide essential cellular processes. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy. 	LO 1.17 [See SP 3.1] LO 1.18 [See SP 5.3] LO 1.19 [See SP 1.1] LO 1.25 [See SP 1.2] LO 1.26 [See SP 6.2] LO 2.1 [See SP 6.2] LO 2.2 [See SP 6.1] LO 2.3 [See SP 6.4] LO 2.4 [See SP 1.4, 3.1] LO 2.5 [See SP 6.2] LO 2.13 [See SP 6.2] LO 2.14 [See SP 1.4] LO 2.21 [See SP 6.4] LO 4.4 [See SP 6.4] LO 4.5 [See SP 6.2] LO 4.16 [See SP 1.4] LO 4.16 [See SP 1.4] LO 4.16 [See SP 1.4]	 Number of heart chambers in animals 685, 687, 688, 689, 690 Absence of legs in some sea mammals 543, 375, 377 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) 19 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773 Krebs cycle 139, 140, 141, 142, 143, 144, 145, 146, 147, 151, 152 Glycolysis 139, 140, 141, 142, 143, 144, 145, 146, 147 Calvin cycle 159, 163, 164, 165, 166, 167, 168, 169, 171 Fermentation 150 Endothermy (the use of thermal energy generated by metabolism to maintain homeostatic body temperatures) 644, 645, 646, 647, 648, 649, 650, 651 Ectothermy (the use of external thermal energy to help regulate and maintain body temperature) 644, 645 Seasonal reproduction in animals and plants 731

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
25 The Origin and Diversification of Eukaryotes (continued)	481–503					 Change in the producer level can affect the number and size of other trophic levels 499, 866, 867, 870, 872, 876 Change in energy resources levels such as sunlight can affect the number and size of the trophic levels. 866, 867, 868 NADP⁺ in photosynthesis 159, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Endoplasmic reticulum 67, 72, 73, 75, 76, 77, 92 Mitochondria 67, 72, 73, 82, 84, 92 Chloroplasts 67, 73, 80, 82, 83, 84, 92 Golgi 67, 72, 73, 78, 81, 92, 98 Nuclear envelope 67, 74, 75, 72, 73, 79, 81, 92 Photoperiodism and phototropism in plants 618, 619, 626, 627, 628, 630, 631, 632, 633 Hibernation and migration in animals 807, 842, 890 Chemotaxis in bacteria, sexual reproduction in fungi 511 Nocturnal and diurnal activity: circadian rhythms 629, 771, 774, 775, 792
26 The Colonization of Land by Plants and Fungi	504–527	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 B: Organisms are linked by lines of de- scent from common ancestry. C: Life continues to evolve within a chang- ing environment. D: The origin of living systems is explained by natural processes. C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. E: Many biological processes involved in growth, reproduc- tion and dynamic homeostasis include temporal regulation and coordination. B: Expression of genetic information involves cellular and molecular mechanisms. D: Cells communicate by generating, trans- mitting and receiving chemical signals. 	 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. 1.C.1: Speciation and extinction have occurred throughout the Earth's history. 1.D.2: Scientific evidence from many different disciplines supports models of the origin of life. 2.C.2: Organisms respond to changes in their external environments. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 3.B.2: A variety of intercellular and intracellular signal transmissions mediate gene expression. 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. 	LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 1.17 [See SP 3.1] LO 1.18 [See SP 3.1] LO 1.19 [See SP 1.1] LO 1.20 [See SP 4.2] LO 1.21 [See SP 4.2] LO 1.32 [See SP 4.1] LO 2.35 [See SP 4.2] LO 2.36 [See SP 4.2] LO 2.37 [See SP 6.2] LO 3.22 [See SP 6.2] LO 3.34 [See SP 1.1]	 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92, 147, 484 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 89, 92 Number of heart chambers in animals 685, 687, 688, 689, 690 Absence of legs in some sea mammals 543, 375, 377 Five major extinctions 447 Human impact on ecosystems and species extinction rates 549, 824, 825, 826, 827, 828, 877, 878, 879, 883, 884, 885, 886, 887, 893, 896, 897, 898, 902, 903 Photoperiodism and phototropism in plants 618, 619, 626, 627, 628, 630, 631, 632, 633 Hibernation and migration in animals 807, 842, 890 Chemotaxis in bacteria, sexual reproduction in fungi 511 Nocturnal and diurnal activity: circadian rhythms 771, 774, 775, 792 <i>Illustrative examples continued on next page</i>

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
26 The Colonization of Land by Plants and Fungi (continued)	504–527					 Diurnal/nocturnal and sleep/wake cycles 771, 774, 775, 792 Visual displays in the reproductive cycle 195, 196, 333, 334, 335, 337, 498, 501, 506, 507, 511, 600, 737, 740, 742 Fruiting body formation in fungi, slime molds and certain types of bacteria 498 Cytokines regulate gene expression to allow for cell replication and division 176, 178, 179, 181, 183, 184, 198, 199, 200 Ethylene levels cause changes in the pro- duction of different enzymes, allowing fruits to ripen 620, 625 Seed germination and gibberellin 600, 602, 603, 604, 605, 606, 623, 624 Changes in p53 activity can result in cancer 327 HOX genes and their role in development 361 Immune cells interact by cell-cell contact, antigen-presenting cells (APCs), helper T cells and killer T cells [See also 2.D.4] 717, 718, 719, 721, 722, 723 Neurotransmitters 66, 648, 649, 650, 752, 753, 754, 755, 756, 757, 758, 759, 761, 764 Plant immune response 637 Morphogens in embryonic development 742, 743, 744, 745, 746, 747, 748 Insulin 680 Thyroid hormones 650, 651, 653 Testosterone 111, 739 Estrogen 650
27 The Rise of Animal Diversity	528–551	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis	 A: Change in the genetic makeup of a population over time is evolution. B: Organisms are linked by lines of de- scent from common ancestry. C: Life continues to evolve within a chang- ing environment. C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. 	 A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics. B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. C.3: Populations of organisms continue to evolve. C.2: Organisms respond to changes in their external environments. 	LO 1.9 [See SP 5.3] LO 1.10 [See SP 5.2] LO 1.11 [See SP 4.2] LO 1.12 [See SP 7.1] LO 1.13 [See SP 1.1, 2.1] LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 1.17 [See SP 6.1] LO 1.18 [See SP 5.3] LO 1.19 [See SP 1.1] LO 1.25 [See SP 1.2] LO 1.26 [See SP 5.3] LO 2.21 [See SP 4.1]	 Analysis of sequence data sets 284 Analysis of phylogenetic trees 10, 340, 358, 370, 377, 381, 383, 384, 385, 387, 388, 389, 390, 391, 392, 394, 395, 396, 397, 398, 447, 470, 486, 487, 488, 489, 490, 496, 497, 504, 505, 513 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 89, 92 Number of heart chambers in animals 685, 687, 688, 689, 690 Absence of legs in some sea mammals 543, 375, 377 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
	528–551					 Photoperiodism and phototropism in plants 618, 619, 626, 627, 628, 630, 631, 632, 633 Hibernation and migration in animals 807, 842, 890 Chemotaxis in bacteria, sexual reproduction in fungi 511 Nocturnal and diurnal activity: circadian rhythms 771, 774, 775, 792
UNIT 5	Plant Fo	orm and Functi	on pg. 552			
28 Plant Structure and Growth	553–570	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 3.B: Expression of genetic information involves cellular and molecular mechanisms. 4.A: Interactions within biological systems lead to complex properties. 	 2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 3.B.1: Gene regulation results in differential gene expression, leading to cell specialization. 4.A.3: Interactions between external stimuli and regulated gene expression result in specialization of cells, tissues and organs. 	LO 2.31 [See SP 7.2] LO 2.32 [See SP 1.4] LO 2.33 [See SP 6.1] LO 2.34 [See SP 7.1] LO 3.18 [See SP 7.1] LO 3.19 [See SP 7.1] LO 3.20 [See SP 6.2] LO 3.21 [See SP 1.4] LO 4.7 [See SP 1.3]	 Morphogenesis of fingers and toes 315, 375, 542, 543 Immune function 711,712, 713, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724 Flower development 598, 599, 600, 603 Promoters 275, 296, 297, 300, 301, 302, 303 Terminators 300 Enhancers 300, 301, 302, 303
29 Resource Acquisition, Nutrition, and Transport in Vascular Plants	571–596	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 2.A: Growth, reproduction and maintenance of the organization of living systems require free energy and matter. 2.B: Growth, reproduction and dynamic homeostasis require that cells create and maintain internal environments that are different from their external environments. 2.C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. 	 2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. 2.B.1: Cell membranes are selectively permeable due to their structure. 2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis. 4.A.3: Interactions between external stimuli and regulated gene expression result in specialization of cells, tissues and organs. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy. 	LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 4.1] LO 2.9 [See SP 1.1, 1.4] LO 2.10 [See SP 1.4, 3.1] LO 2.11 [See SP 1.1, 7.1, 7.2] LO 2.15 [See SP 6.1] LO 2.16 [See SP 7.2] LO 2.17 [See SP 7.2] LO 2.18 [See SP 6.4] LO 2.19 [See SP 6.4] LO 2.20 [See SP 6.1] LO 2.20 [See SP 1.1, 1.2] LO 2.30 [See SP 1.1, 1.2] LO 4.7 [See SP 1.3] LO 4.14 [See SP 2.2] LO 4.15 [See SP 1.4] LO 4.16 [See SP 6.4]	 Cohesion 30 Adhesion 31 High specific heat capacity 31, 58 Universal solvent supports reactions 33 Heat of vaporization 31 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Cells of the alveoli 703 Cells of the villi 674 Microvilli 72, 87 Operons in gene regulation 295, 296 Temperature regulation in animals 644, 645, 646, 647 Plant responses to water limitations 577, 591, 592, 625, 634, 635 Lactation in mammals 649, 650, 747 Ripening of fruit 620, 625 Diabetes mellitus in response to decreased insulin 680 Dehydration in response to decreased antidiuretic hormone (ADH) 661 Graves' disease (hyperthyroidism) 651 Blood clotting 697 Invertebrate immune systems have nonspecific response mechanisms, but they lack pathogen-specific defense responses 713 Illustrative examples continued on next page

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
	571–596		 2.D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system's environment. 4.A: Interactions within biological systems lead to complex properties. 			 Plant defenses against pathogens include molecular recognition systems with systemic responses 713 Infection triggers chemical responses that destroy infected and adjacent cells, thus localizing the effects 714, 722, 723 Vertebrate immune systems have nonspecific and nonheritable defense mechanisms against pathogens 712, 714, 716, 717, 718, 719
30 Reproduction and Domestication of Flowering Plants	597–616	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 3.A: Heritable information provides for continuity of life. 3.C: The processing of genetic information is imperfect and is a source of genetic variation. 	 2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization. 3.C.1: Changes in genotype can result in changes in phenotype. 3.C.2: Biological systems have multiple processes that increase genetic variation. 	LO 2.31 [See SP 7.2] LO 2.32 [See SP 1.4] LO 2.33 [See SP 6.1] LO 2.34 [See SP 6.5] LO 3.1 [See SP 6.5] LO 3.2 [See SP 4.1] LO 3.3 [See SP 1.2] LO 3.4 [See SP 1.2] LO 3.5 [See SP 6.4] LO 3.6 [See SP 6.4] LO 3.7 [See SP 6.4] LO 3.7 [See SP 6.2] LO 3.10 [See SP 7.1] LO 3.11 [See SP 5.3] LO 3.24 [See SP 6.4, 7.2] LO 3.25 [See SP 1.1] LO 3.25 [See SP 7.2] LO 3.27 [See SP 7.2] LO 3.28 [See SP 6.2]	 Morphogenesis of fingers and toes 315, 375, 542, 543 Immune function 711, 712, 713, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724 Flower development 598, 599, 600, 603 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Synthesis 256, 333 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Mitosis-promoting factor (MPF) 185 Action of platelet-derived growth factor (PDGF) 186 Cancer results from disruptions in cell cycle control 187 Antibiotic resistance mutations 469 Sickle-cell disorder and heterozygote advantage 414
31 Plant Responses to Internal and External Signals	617–639	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis	 A: Change in the genetic makeup of a population over time is evolution. A: Growth, reproduc- tion and maintenance of the organization of liv- ing systems require free energy and matter. C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. 	 1.A.1. Natural selection is a major mechanism of evolution. 2.A.2: Organisms capture and store free energy for use in biological processes. 2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. 2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.C.2: Organisms respond to changes in their external environments. 	LO 1.1 [See SP 1.5, 2.2] LO 1.2 [See SP 2.2, 5.3] LO 1.3 [See SP 2.2] LO 2.4 [See SP 1.4, 3.1] LO 2.5 [See SP 6.2] LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 4.1] LO 2.9 [See SP 4.1] LO 2.15 [See SP 6.1] LO 2.16 [See SP 6.1] LO 2.16 [See SP 7.2] LO 2.17 [See SP 5.3] LO 2.18 [See SP 6.4]	 Application of the Hardy-Weinberg equilibrium equation 1, 2, 5, 9, 10, 13, 369, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415 NADP⁺ in photosynthesis 159, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Cohesion 30 Adhesion 31 High specific heat capacity 31, 58 Universal solvent supports reactions 33 Heat of vaporization 31 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Illustrative examples continued on next page

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
31 Plant Responses to Internal and External Signals (continued)	617–639		 2.D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system's environment. 2.E: Many biological processes involved in growth, reproduc- tion and dynamic homeostasis include temporal regulation and coordination. 	 2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 	LO 2.19 [See SP 6.4] LO 2.20 [See SP 6.1] LO 2.21 [See SP 4.1] LO 2.29 [See SP 1.1, 1.2] LO 2.30 [See SP 1.1, 1.2] LO 2.35 [See SP 4.2] LO 2.36 [See SP 6.1] LO 2.37 [See SP 7.2]	 Cells of the alveoli 703 Cells of the villi 674 Microvilli 72, 87 Operons in gene regulation 295, 296 Temperature regulation in animals 644, 645, 646, 647 Plant responses to water limitations 577, 591, 592, 625, 634, 635 Lactation in mammals 649, 650, 747 Ripening of fruit 620, 625 Diabetes mellitus in response to decreased insulin 680 Dehydration in response to decreased antidiuretic hormone (ADH) 661 Graves' disease (hyperthyroidism) 651 Blood clotting 697 Photoperiodism and phototropism in plants 618, 619, 626, 627, 628, 630, 631, 632, 633 Hibernation and migration in animals 807, 842, 890 Chemotaxis in bacteria, sexual reproduction in fungi 196, 511 Nocturnal and diurnal activity: circadian rhythms 771, 774, 775, 792 Invertebrate immune systems have nonspecific response mechanisms, but they lack pathogen-specific defense responses 713 Plant defenses against pathogens include molecular recognition systems with systemic responses 713 Infection triggers chemical responses that destroy infected and adjacent cells, thus localizing the effects 714, 722, 723 Vertebrate immune systems have nonspecific and nonheritable defense mechanisms against pathogens 712, 714, 716, 717, 718, 719 Circadian rhythms, or the physiological cycle of about 24 hours that is present in all eukaryotes and persists even in the absence of external cues 629, 631, 771, 773, 774, 775, 792 Diurnal/nocturnal and sleep/wake cycles 771, 774, 775, 792 Visual displays in the reproductive cycle 195, 196, 333, 334, 335, 337, 498, 501, 506, 507, 511, 600, 737, 740, 742 Fruiting body formation in fungi, slime molds and certain types of bacteria 498

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
UNIT 6	Animal	Form and Func	tion, pg.640			
32 Homeostasis and Endocrine Signaling	641-664	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 A: Change in the genetic makeup of a population over time is evolution. B: Organisms are linked by lines of de- scent from common ancestry. C: Life continues to evolve within a chang- ing environment. A: Growth, reproduc- tion and maintenance of the organization of liv- ing systems require free energy and matter. B: Growth, repro- duction and dynamic homeostasis require that cells create and maintain internal envi- ronments that are differ- ent from their external environments. C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic ho- meostasis. D: Growth and dy- namic homeostasis of a biological system are influenced by changes in the system's environment. E: Many biological processes involved in growth, reproduction and dynamic homeo- stasis include temporal regulation and coordi- nation. E: Transmission of information results in changes within and between biological systems. 	 1.A.1. Natural selection is a major mechanism of evolution. 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 1.C.3: Populations of organisms continue to evolve. 2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. 2.B.1: Cell membranes are selectively permeable due to their structure. 2.B.2: Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes. 2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.C.2: Organisms respond to changes in their external environments. 2.D.1: All biological systems from cells and organisms to populations, communities and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis. 2.E.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. 3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 	LO 1.1 [See SP 1.5, 2.2] LO 1.2 [See SP 2.2, 5.3] LO 1.3 [See SP 2.2] LO 1.14 [See SP 7.2] LO 1.15 [See SP 7.2] LO 1.25 [See SP 1.2] LO 1.26 [See SP 5.3] LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 4.1] LO 2.9 [See SP 1.4, 3.1] LO 2.10 [See SP 1.4, 3.1] LO 2.11 [See SP 1.4, 3.1] LO 2.12 [See SP 1.4] LO 2.15 [See SP 6.1] LO 2.16 [See SP 6.1] LO 2.17 [See SP 6.1] LO 2.18 [See SP 6.4] LO 2.19 [See SP 6.4] LO 2.20 [See SP 6.4] LO 2.21 [See SP 6.4] LO 2.22 [See SP 1.3, 3.2] LO 2.23 [See SP 4.2, 7.2] LO 2.24 [See SP 6.1] LO 2.25 [See SP 6.2] LO 2.26 [See SP 5.1] LO 2.27 [See SP 6.2] LO 2.28 [See SP 1.4] LO 2.29 [See SP 6.2] LO 2.29 [See SP 6.2] LO 2.24 [See SP 5.1] LO 2.25 [See SP 6.2] LO 2.26 [See SP 7.1] LO 2.31 [See SP 7.2] LO 2.33 [See SP 6.1] LO 2.34 [See SP 7.1] LO 3.43 [See SP 6.2, 7.1] LO 3.44 [See SP 1.2] LO 3.45 [See SP 1.2] LO 3.45 [See SP 1.1] LO 3.49 [See SP 1.1] LO 3.49 [See SP 1.1] LO 3.49 [See SP 1.1] LO 3.50 [See SP 1.1]	 Application of the Hardy-Weinberg equilibrium equation 1, 2, 5, 9, 10, 13, 369, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 89, 92 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) 19 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773 Cohesion 30 Adhesion 31 High specific heat capacity 31, 58 Universal solvent supports reactions 33 Heat of vaporization 31 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Cells of the alveoli 703 Lactation in mammals 649, 650, 651 Plant response to water limitations 577, 591, 592, 625, 634, 635 Lactation in response to decreased antidiuretic hormone (ADH) 661 Graves' disease (hyperthyroidism) 651 Blood clotting 697 Photoperiodism and phototropism in plants 618, 619, 626, 627, 628, 630, 631, 632, 633 Hibernation and migration in animals 807, 842, 890 Chemotaxis in bacteria, sexual reproduction in fungi 511 Illustrative examples continued on next page

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
32 Homeostasis and Endocrine Signaling (continued)	641–664					 Nocturnal and diurnal activity: circadian rhythms 771, 774, 775, 792 Cell density 186 Temperature 644, 645, 646, 647 Water availability 820, 821, 822, 823, 824, 825, 826, 827, 828, 829 Sunlight 6, 159, 160, 161, 162, 163, 164, 167, 168, 171 Symbiosis (mutualism, commensalism, parasitism) 475, 586, 845, 846, 850, 851 Predator-prey relationships 528, 751, 768, 841, 848, 853, 854 Water and nutrient availability, temperature, salinity, pH 30, 31, 32, 33, 34, 35, 36 Water and nutrient availability 820, 821, 822, 823, 824, 825, 826, 827, 828, 829 Food chains and food webs 853, 854, 855 Species diversity 549, 851, 852, 853, 856, 857, 858, 859, 860, 883 Population density 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 852, 853 Algal blooms 896 Gas exchange in aquatic and terrestrial plants 591, 592 Digestive mechanisms in animals such as food vacuoles, gastrovascular cavities, one-way digestive systems 668, 670, 671, 672, 674, 675 Respiratory systems of aquatic and terrestrial animals 700, 701, 702, 703, 705, 706, 707 Nitrogenous waste production and elimination in aquatic and terrestrial animals 654, 655, 656, 657, 659, 660, 661 Osmoregulation in aquatic and terrestrial animals 654, 655, 656, 657, 659, 660, 661 Osmoregulation in aquatic and terrestrial animals countercurrent exchange mechanisms) 644, 645, 646, 647, 648, 649, 650, 651 Invasive and/or eruptive species 585, 886 Human impact 824, 825, 826, 827, 828, 877, 878, 879, 883, 884, 885, 886, 887, 893, 896, 897, 898, 902, 903 Morphogenesis of fingers and toes 315, 375, 542, 543 Immune function 711,712, 713, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724 Flower development 598, 599, 600, 603 Acetylcholine 764, 765 Epinephrine 764, 765 Vision 773, 776, 785 Hearing 776, 777, 783, 784, 785 Illustrative exam

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
	641–664					 Muscle movement 773, 793, 794, 795, 796, 797, 798, 799, 800 Abstract thought and emotions 773, 775, 776 Neuro-hormone production 649, 650, 651, 652 Forebrain (cerebrum), midbrain (brainstem) and hindbrain (cerebellum) 772, 773, 775, 776 Right and left cerebral hemispheres in humans 773
33 Animal Nutrition	665–683	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 B: Organisms are linked by lines of de- scent from common ancestry. C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. B: Competition and cooperation are important aspects of biological systems. 	 B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes. B.1: Interactions between molecules affect their structure and function. B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter. 	LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 2.15 [See SP 6.1] LO 2.17 [See SP 7.2] LO 2.17 [See SP 7.2] LO 2.18 [See SP 6.4] LO 2.19 [See SP 6.4] LO 2.20 [See SP 6.1] LO 4.17 [See SP 5.1] LO 4.18 [See SP 1.4]	 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 89, 92 Operons in gene regulation 295, 296 Temperature regulation in animals 644, 645, 646, 647 Plant responses to water limitations 577, 591, 592, 625, 634, 635 Lactation in mammals 649, 650, 747 Ripening of fruit 620, 625 Diabetes mellitus in response to decreased insulin 680 Dehydration in response to decreased antidiuretic hormone (ADH) 661 Graves' disease (hyperthyroidism) 651 Blood clotting 697 Exchange of gases 684, 700, 701, 702, 703, 705, 706, 707 Circulation of fluids 687, 688, 689, 690, 691, 692, 693, 694 Digestion of food 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 670, 680 Excretion of wastes 654, 655, 656, 657, 659, 660, 661, 662 Bacterial community in the rumen of animals 677
34 Circulation and Gas Exchange	684–710	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 3.D: Cells communicate by generating, transmitting and receiving chemical signals. 4.B: Competition and cooperation are important aspects of biological systems. 	 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history. 4.B.2: Cooperative interactions within organisms promote efficiency in the use of energy and matter. 	LO 2.35 [See SP 4.2] LO 2.36 [See SP 6.1] LO 2.37 [See SP 7.2] LO 3.31 [See SP 7.2] LO 3.32 [See SP 3.1] LO 3.33 [See SP 1.4] LO 4.18 [See SP 1.4]	 Circadian rhythms, or the physiological cycle of about 24 hours that is present in all eukaryotes and persists even in the absence of external cues 629, 631, 771, 773, 774, 775, 792 Diurnal/nocturnal and sleep/wake cycles 771, 774, 775, 792 Visual displays in the reproductive cycle 195, 196, 333, 334, 335, 337, 498, 501, 506, 507, 511, 600, 737, 740, 742 Fruiting body formation in fungi, slime molds and certain types of bacteria 498 DNA repair mechanisms 258 Exchange of gases 684, 700, 701, 702, 703, 705, 706, 707 Circulation of fluids 687, 688, 689, 690, 691, 692, 693, 694 Illustrative examples continued on next page

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
	684–710	Big Idea 4: Biologi- cal systems interact, and these systems and their interactions possess complex properties				 Digestion of food 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 670, 680 Excretion of wastes 654, 655, 656, 657, 659, 660, 661, 662 Bacterial community in the rumen of animals 677 Bacterial community in and around deep-sea vents 474
35 The Immune System	711–728	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 2.D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system's environment. 3.D: Cells communicate by generating, trans- mitting and receiving chemical signals. 	2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis.3.D.1: Cell communication processes share common features that reflect a shared evolutionary history.	LO 2.29 [See SP 1.1, 1.2] LO 2.30 [See SP 1.1, 1.2] LO 3.31 [See SP 7.2] LO 3.32 [See SP 3.1] LO 3.33 [See SP 1.4]	 Invertebrate immune systems have nonspecific response mechanisms, but they lack pathogen-specific defense responses 713 Plant defenses against pathogens include molecular recognition systems with systemic responses 713 Infection triggers chemical responses that destroy infected and adjacent cells, thus localizing the effects 714, 722, 723 Vertebrate immune systems have nonspecific and nonheritable defense mechanisms against pathogens 712, 714, 716, 717, 718, 719 DNA repair mechanisms 258
36 Reproduction and Development	729–750	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 2.C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. 2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination. 3.A: Heritable informa- tion provides for conti- nuity of life. 3.B: Expression of genetic information involves cellular and molecular mechanisms. 	 2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.C.2: Organisms respond to changes in their external environments. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 3.A.2: In eukaryotes, heritable informa- tion is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization. 3.A.3: The chromosomal basis of inherit- ance provides an understanding of the pattern of passage (transmission) of genes from parent to offspring. 3.B.1: Gene regulation results in dif- ferential gene expression, leading to cell specialization. 	LO 2.15 [See SP 6.1] LO 2.16 [See SP 7.2] LO 2.17 [See SP 5.3] LO 2.18 [See SP 6.4] LO 2.19 [See SP 6.4] LO 2.20 [See SP 6.1] LO 2.21 [See SP 4.1] LO 2.38 [See SP 5.1] LO 2.39 [See SP 6.1] LO 2.40 [See SP 7.2] LO 3.7 [See SP 1.2] LO 3.9 [See SP 6.2] LO 3.10 [See SP 7.1] LO 3.11 [See SP 5.3] LO 3.12 [See SP 1.1, 7.2] LO 3.13 [See SP 3.1] LO 3.14 [See SP 7.1] LO 3.18 [See SP 7.1] LO 3.19 [See SP 7.1] LO 3.20 [See SP 6.2] LO 3.21 [See SP 1.4]	 Operons in gene regulation 295, 296 Temperature regulation in animals 644, 645, 646, 647 Plant responses to water limitations 577, 591, 592, 625, 634, 635 Lactation in mammals 649, 650, 747 Ripening of fruit 620, 625 Diabetes mellitus in response to decreased insulin 680 Dehydration in response to decreased antidiuretic hormone (ADH) 661 Graves' disease (hyperthyroidism) 651 Blood clotting 697 Photoperiodism and phototropism in plants 618, 619, 626, 627, 628, 630, 631, 632, 633 Hibernation and migration in animals 807, 842, 890 Chemotaxis in bacteria, sexual reproduction in fungi 511 Nocturnal and diurnal activity: circadian rhythms 629, 771, 774, 775, 792 Hibernation 807, 842, 890 Migration 807, 842, 890 Niche and resource partitioning 585, 846 Biology of pollination 548 Mitosis-promoting factor (MPF) 185 Action of platelet-derived growth factor (PDGF) 186 Cancer results from disruptions in cell cycle control 187 Sickle-cell disease 58, 288, 406, 414, 501 X-linked color blindness 233 Trisomy 21/Down syndrome 242 Klinefelter syndrome 241 Reproduction issues 737, 748, 841 Promoters 275, 296, 297, 300, 301, 302, 303

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
37 Neurons, Synapses, and Signaling	751–767	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 A: Change in the genetic makeup of a population over time is evolution. E: Many biological processes involved in growth, reproduc- tion and dynamic homeostasis include temporal regulation and coordination. D: Cells communicate by generating, trans- mitting and receiving chemical signals. E: Transmission of information results in changes within and between biological systems. 	 A.2: Natural selection acts on phenotypic variations in populations. E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. D.1: Cell communication processes share common features that reflect a shared evolutionary history. D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling. E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 	LO 1.4 [See SP 5.3] LO 1.5 [See SP 7.1] LO 2.35 [See SP 4.2] LO 2.36 [See SP 6.1] LO 2.37 [See SP 7.2] LO 3.31 [See SP 7.2] LO 3.32 [See SP 3.1] LO 3.33 [See SP 1.4] LO 3.34 [See SP 6.2] LO 3.43 [See SP 6.2] LO 3.43 [See SP 6.2, 7.1] LO 3.44 [See SP 6.2, 7.1] LO 3.45 [See SP 1.2] LO 3.45 [See SP 1.2] LO 3.46 [See SP 1.2] LO 3.47 [See SP 1.1] LO 3.48 [See SP 1.1] LO 3.49 [See SP 1.1] LO 3.50 [See SP 1.1]	 Sickle-cell disease 58, 288, 406, 414, 501 Peppered moth 10 DDT resistance in insects 861, 897 Artificial selection 13, 15, 17, 371, 611 Loss of genetic diversity within a crop species 883, 884, 885, 886, 887, 888, 889, 890, 891 Circadian rhythms, or the physiological cycle of about 24 hours that is present in all eukaryotes and persists even in the absence of external cues 629, 631, 771, 773, 774, 775, 792 Diurnal/nocturnal and sleep/wake cycles 771, 774, 775, 792 Visual displays in the reproductive cycle 195, 196, 333, 334, 335, 337, 498, 501, 506, 507, 511, 600, 737, 740, 742 Fruiting body formation in fungi, slime molds and certain types of bacteria 498 DNA repair mechanisms 258 Neurotransmitters 66, 648, 649, 650, 752, 753, 754, 755, 756, 757, 758, 759, 761, 764 Plant immune response 637 Morphogens in embryonic development 742, 743, 744, 745, 746, 747, 748 Insulin 680 Thyroid hormones 650, 651, 653 Testosterone 111, 739 Estrogen 650 Acetylcholine 764, 765 Dopamine 764, 765 Serotonin 764, 765 Serotonin 764, 765 Norepinephrine 764, 765 Norepinephrine 764, 765 Norepinephrine 764, 765 Norepinephrine 764, 765 Notel movement 652, 773, 793, 794, 795, 796, 797, 798, 799, 800 Abstract thought and emotions 773, 775, 776 Neuro-hormone production 649, 650, 651, 652 Forebrain (cerebrum), midbrain (brainstem) and hindbrain (cerebellum) 772, 773, 775, 776 Right and left cerebral hemispheres in humans 773

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
38 Nervous and Sensory Systems	768–791	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 2.C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. 2.D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system's environment. 2.E: Many biological processes involved in growth, reproduc- tion and dynamic homeostasis include temporal regulation and coordination. 3.D: Cells communicate by generating, trans- mitting and receiving chemical signals. 3.E: Transmission of information results in changes within and between biological systems. 	 2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes. 2.C.2: Organisms respond to changes in their external environments. 2.D.2: Homeostatic mechanisms reflect both common ancestry and diver- gence due to adaptation in different environments. 2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 3.D.1: Cell communication processes shared evolutionary history. 3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 	LO 2.15 [See SP 6.1] LO 2.16 [See SP 7.2] LO 2.17 [See SP 5.3] LO 2.18 [See SP 6.4] LO 2.19 [See SP 6.4] LO 2.20 [See SP 6.1] LO 2.21 [See SP 6.2] LO 2.26 [See SP 6.2] LO 2.26 [See SP 7.1] LO 2.27 [See SP 7.1] LO 2.29 [See SP 1.1, 1.2] LO 2.30 [See SP 1.1, 1.2] LO 2.36 [See SP 6.1] LO 2.37 [See SP 7.2] LO 3.31 [See SP 7.2] LO 3.32 [See SP 3.1] LO 3.33 [See SP 1.4] LO 3.43 [See SP 1.2] LO 3.45 [See SP 1.2] LO 3.46 [See SP 1.2] LO 3.47 [See SP 1.1] LO 3.48 [See SP 1.1] LO 3.49 [See SP 1.1] LO 3.50 [See SP 1.1]	 Operons in gene regulation 295, 296 Temperature regulation in animals 644, 645, 646, 647 Plant responses to water limitations 577, 591, 592, 625, 634, 635 Lactation in mammals 649, 650, 747 Ripening of fruit 620, 625 Diabetes mellitus in response to decreased insulin 680 Dehydration in response to decreased antidiuretic hormone (ADH) 661 Graves' disease (hyperthyroidism) 651 Blood clotting 697 Photoperiodism and phototropism in plants 618, 619, 626, 627, 628, 630, 631, 632, 633 Hibernation and migration in animals 807, 842, 890 Chemotaxis in bacteria, sexual reproduction in fungi 511 Nocturnal and diurnal activity: circadian rhythms 629, 771, 774, 775, 792 Gas exchange in aquatic and terrestrial plants 591, 592 Digestive mechanisms in animals such as food vacuoles, gastrovascular cavities, one-way digestive systems 668, 670, 671, 672, 674, 675 Respiratory systems of aquatic and terrestrial animals 700, 701, 702, 703, 705, 706, 707 Nitrogenous waste production and elimination in aquatic and terrestrial animals 654, 655, 656, 657, 659, 660, 661 Excretory systems in flatworms, earthworms and vertebrates 654, 655, 656, 657, 659, 660, 661 Osmoregulation in bacteria, fish and protists 654 Osmoregulation in aquatic and terrestrial plants 575, 577 Circulatory systems in fish, amphibians and mammals 687, 688, 689, 690, 691, 692, 693, 694 Thermoregulation in aquatic and terrestrial animals 627, 658, 657, 659, 660, 661 Osmoregulation in aquatic and terrestrial plants 575, 577 Circulatory systems in fish, amphibians and mammals 687, 688, 689, 690, 691, 692, 693, 694 Thermoregulation in aquatic and terrestrial animals 60, 645, 646, 647, 648, 649, 650, 651 Invertebrate immune systems have nons

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
38 Nervous and Sensory Systems (continued)	768–791					 Diurnal/nocturnal and sleep/wake cycles 771, 774, 775, 792 Visual displays in the reproductive cycle 195, 196, 333, 334, 335, 337, 498, 501, 506, 507, 511, 600, 737, 740, 742 Fruiting body formation in fungi, slime molds and certain types of bacteria 498 Acetylcholine 764, 765 Epinephrine 764, 765 Dopamine 764, 765 Serotonin 764, 765 GABA 764, 765 Vision 773, 776, 785 Hearing 776, 777, 783, 784, 785 Muscle movement 773, 793, 794, 795, 796, 797, 798, 799, 800 Abstract thought and emotions 773, 775, 776 Neuro-hormone production 649, 650, 651, 652 Forebrain (cerebrum), midbrain (brainstem) and hindbrain (cerebellum) 772, 773, 775, 776 Right and left cerebral hemispheres in humans 773
39 Motor Mechanisms and Behavior	792–816	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes	 A: Change in the genetic makeup of a population over time is evolution. B: Organisms are linked by lines of de- scent from common ancestry. E: Many biological processes involved in growth, reproduc- tion and dynamic homeostasis include temporal regulation and coordination. A: Heritable information provides for continuity of life. E: Transmission of information results in changes within and between biological systems. 	 1.A.2: Natural selection acts on phenotypic variations in populations. 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today. 2.E.2: Timing and coordination of physiological events are regulated by multiple mechanisms. 2.E.3: Timing and coordination of behavior are regulated by various mechanisms and are important in natural selection. 3.A.1: DNA, and in some cases RNA, is the primary source of heritable information. 3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. 	LO 1.4 [See SP 5.3] LO 1.5 [See SP 7.1] LO 1.14 [See SP 3.1] LO 1.15 [See SP 7.2] LO 1.16 [See SP 6.1] LO 2.35 [See SP 4.2] LO 2.36 [See SP 6.1] LO 2.37 [See SP 7.2] LO 2.38 [See SP 7.2] LO 2.39 [See SP 6.1] LO 2.40 [See SP 6.1] LO 2.40 [See SP 6.5] LO 3.1 [See SP 6.5] LO 3.2 [See SP 4.1] LO 3.3 [See SP 1.2] LO 3.4 [See SP 6.4] LO 3.43 [See SP 6.4] LO 3.43 [See SP 6.2, 7.1] LO 3.45 [See SP 1.2] LO 3.46 [See SP 1.2] LO 3.47 [See SP 1.1] LO 3.48 [See SP 1.1] LO 3.49 [See SP 1.1] LO 3.50 [See SP 1.1]	 Sickle-cell disease 58, 288, 406, 414, 501 Peppered moth 10 DDT resistance in insects 861, 897 Artificial selection 13, 15, 17, 371, 611 Loss of genetic diversity within a crop species 883, 884, 885, 886, 887, 888, 889, 890, 891 Cytoskeleton (a network of structural proteins that facilitate cell movement, morphological integrity and organelle transport) 3, 84, 86, 87, 89, 91 Membrane-bound organelles (mitochondria and/or chloroplasts) 3, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 90, 92 Linear chromosomes 5, 178, 179, 180, 181, 183 Endomembrane systems, including the nuclear envelope 4, 60, 70, 71, 72, 73, 75, 76, 77, 775, 79, 80, 81, 82, 89, 92 Circadian rhythms, or the physiological cycle of about 24 hours that is present in all eukaryotes and persists even in the absence of external cues 629, 631, 771, 773, 774, 775, 792 Visual displays in the reproductive cycle 195, 196, 333, 334, 335, 337, 498, 501, 506, 507, 511, 600, 737, 740, 742 Fruiting body formation in fungi, slime molds and certain types of bacteria 498 Hibernation 807, 842, 890 Migration 807, 842, 890 Niche and resource partitioning 846 Addition of a poly-A tail 277, 718 Addition of a GTP cap 110, 113, 282, 283, 325 Excision of introns 278, 718

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
39 Motor Mechanisms and Behavior (continued)	792–816					 Enzymatic reactions 52, 116, 125, 126, 127, 129, 130, 131, 132, 280 Transport by proteins 89, 94, 95, 97 Electrophoresis 263 Plasmid-based transformation 262, 263, 264, 265 Restriction enzyme analysis of DNA 262, 263 Polymerase chain reaction (PCR) 264, 265 Genetically modified foods 611, 613 Cloned animals 307, 308, 321, 322 Acetylcholine 764, 765 Epinephrine 764, 765 Serotonin 764, 765 Serotonin 764, 765 GABA 764, 765 Vision 773, 776, 785 Hearing 776, 777, 783, 784, 785 Muscle movement 773, 793, 794, 795, 796, 797, 798, 799, 800 Abstract thought and emotions 773, 775, 776 Neuro-hormone production 649, 650, 651, 652 Forebrain (cerebrum), midbrain (brainstem) and hindbrain (cerebellum) 772, 773, 775, 776 Right and left cerebral hemispheres in humans 773
UNIT 7	Ecology,	pg. 817				
40 Population Ecology and the Distribution of Organisms	818–844	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 4: Biologi- cal systems inter- act, and these systems and their interactions possess complex properties	 C: Life continues to evolve within a changing environment. D: Growth and dy- namic homeostasis of a biological system are influenced by changes in the system's environment. A: Interactions within biological systems lead to complex properties. B: Competition and cooperation are impor- tant aspects of biologi- cal systems. C: Naturally occurring diversity among and between components within biological sys- tems affects interactions with the environment. 	 1.C.2: Speciation may occur when two populations become reproductively iso- lated from each other. 1.C.3: Populations of organisms continue to evolve. 2.D.1: All biological systems from cells and organisms to populations, communities and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance. 4.B.4: Distribution of local and global eco- systems changes over time. 4.C.3: The level of variation in a popula- tion affects population dynamics. 4.C.4: The diversity of species within an ecosystem. 	LO 1.22 [See SP 6.4] LO 1.23 [See SP 4.1] LO 1.24 [See SP 7.2] LO 1.25 [See SP 1.2] LO 1.26 [See SP 5.3] LO 2.22 [See SP 1.3, 3.2] LO 2.23 [See SP 4.2, 7.2] LO 2.24 [See SP 4.2, 7.2] LO 4.11 [See SP 4.2, 7.2] LO 4.12 [See SP 5.1] LO 4.12 [See SP 5.2] LO 4.13 [See SP 6.4] LO 4.20 [See SP 6.3] LO 4.21 [See SP 6.4] LO 4.25 [See SP 6.4] LO 4.26 [See SP 6.4] LO 4.27 [See SP 6.4]	 Chemical resistance (mutations for resistance to antibiotics, pesticides, herbicides or chemotherapy drugs occur in the absence of the chemical) 19 Emergent diseases 339, 340 Observed directional phenotypic change in a population (Grants' observations of Darwin's finches in the Galāpagos) 9, 10, 399 A eukaryotic example that describes evolution of a structure or process such as heart chambers, limbs, the brain and the immune system 377, 375, 542, 543, 687, 772, 773 Cell density 186 Temperature 644, 645, 646, 647 Water availability 820, 821, 822, 823, 824, 825, 826, 827, 828, 829 Sunlight 6, 159, 160, 161, 162, 163, 164, 167, 168, 171 Symbiosis (mutualism, commensalism, parasitism) 475, 586, 846, 846, 850, 851 Predator-prey relationships 528, 751, 768, 841, 848, 853, 854 Water and nutrient availability, temperature, salinity, pH 30, 31, 32, 33, 34, 35, 36 Water and nutrient availability 820, 821, 822, 823, 824 Food chains and food webs 853, 854, 855

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
	818–844					 Species diversity 851, 852, 853, 856, 857, 858, 859, 860, 883 Population density 832, 833, 834, 836, 837, 838, 839, 852, 853 Algal blooms 896 Symbiotic relationship 475, 845, 846, 850, 851 Introduction of species 549, 886 Global climate change models 500, 898, 899 Loss of keystone species 854 Kudzu 886 Continental drift 443, 444 Prairie chickens 409, 889
41 Species Interactions	845-863	Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 3: Living systems store, re- trieve, transmit, and respond to informa- tion essential to life processes Big Idea 4: Biologi- cal systems interact, and these systems and their interac- tions possess com- plex properties	 2.A: Growth, reproduction and maintenance of the organization of living systems require free energy and matter. 2.D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system's environment. 3.E: Transmission of information results in changes within and between biological systems. 4.A: Interactions within biological systems lead to complex properties. 4.B: Competition and cooperation are important aspects of biological systems. 4.C: Naturally occurring diversity among and between components within biological systems within biological systems. 	 2.A.1: All living systems require constant input of free energy. 2.A.2: Organisms capture and store free energy for use in biological processes. 2.D.1: All biological systems from cells and organisms to populations, communities and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy 3.E.1: Individuals can act on information and communicate it to others. 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts. 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy. 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance. 4.B.4: Distribution of local and global ecosystems changes over time. 4.C.2: Environmental factors influence the expression of the genotype in an organism. 4.C.3: The level of variation in a population affects population dynamics. 4.C.4: The diversity of species within an ecosystem may influence the stability of the ecosystem. 	LO 2.1 [See SP 6.2] LO 2.2 [See SP 6.1] LO 2.3 [See SP 6.4] LO 2.4 [See SP 1.4, 3.1] LO 2.5 [See SP 6.2] LO 2.22 [See SP 1.3, 3.2] LO 2.23 [See SP 4.2, 7.2] LO 2.24 [See SP 5.1] LO 3.40 [See SP 5.1] LO 3.40 [See SP 5.1] LO 3.41 [See SP 1.1] LO 3.42 [See SP 7.1] LO 4.8 [See SP 7.1] LO 4.8 [See SP 3.3] LO 4.10 [See SP 6.4] LO 4.10 [See SP 1.4, 4.1] LO 4.12 [See SP 2.2] LO 4.13 [See SP 6.4] LO 4.14 [See SP 2.2] LO 4.15 [See SP 1.4] LO 4.16 [See SP 6.4] LO 4.19 [See SP 6.4] LO 4.20 [See SP 6.3] LO 4.21 [See SP 6.4] LO 4.23 [See SP 6.4] LO 4.25 [See SP 6.4] LO 4.26 [See SP 6.4] LO 4.27 [See SP 6.4] LO 4.27 [See SP 6.4]	 Krebs cycle 139, 140, 141, 142, 143, 144, 145, 146, 147, 151, 152 Glycolysis 139, 140, 141, 142, 143, 144, 145, 146, 147 Calvin cycle 159, 163, 164, 165, 166, 167, 168, 169, 171 Fermentation 150 Endothermy (the use of thermal energy generated by metabolism to maintain homeostatic body temperatures) 644, 645, 646, 647, 648, 649, 650, 651 Ectothermy (the use of external thermal energy to help regulate and maintain body temperature) 644, 645 Seasonal reproduction in animals and plants 731 Change in the producer level can affect the number and size of other trophic levels. 499, 866, 867, 870, 872, 876 Change in energy resources levels such as sunlight can affect the number and size of the trophic levels. 866, 867, 868 NADP⁺ in photosynthesis 159, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Cell density 186 Temperature 120, 644, 645, 646, 647 Water availability 820, 821, 822, 823, 824, 825, 826, 827, 828, 829 Sunlight 6, 159, 160, 161, 162, 163, 164, 167, 168, 171 Symbiosis (mutualism, commensalism, parasitism) 475, 586, 845, 846, 850, 851 Predator-prey relationships 528, 751, 768, 841, 848, 853, 854 Water and nutrient availability 820, 821, 822, 823, 824, 825, 826, 827, 828, 829 Food chains and food webs 853, 854, 855, 856, 857, 858, 859, 860, 883 <i>Illustrative examples continued on next page</i>

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
41 Species Interactions (continued)	845-863					 Population density 832, 833, 834, 836, 837, 838, 839, 852, 853 Algal blooms 896 Predator warnings 848 Protection of young 391, 392, 733, 811 Territorial marking in mammals 841 Bee dances 805 Birds songs 778 Territorial marking in mammals 804, 841 Herd, flock, and schooling behavior in animals 807, 808, 809 Predator warning 528 Parent and offspring interactions 811, 813 Migration patterns 807, 842, 890 Courtship and mating behaviors 810, 811, 890 Foraging in bees and other animals 805 Pack behavior in animals 807, 808 Stomach and small intestines 671, 672, 673, 674, 675, 677, 678 Kidney and bladder 657, 659, 660, 661 Root, stem and leaf 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569 Respiratory and circulatory 685, 687, 688, 689, 690, 691, 692, 693, 700, 701, 702, 703, 705, 706 Plant vascular and leaf 571, 572, 573, 574, 575, 577, 578, 581, 586, 587, 589, 591, 592, 593, 594 Predator-prey relationships spreadsheet model 528, 751, 768, 841, 848, 853, 854 Symbiotic relationship 845, 846, 850, 851 Introduction of species 549, 886 Global climate change models 898, 899 Loss of keystone species 854 Kudzu 886 Logging, slash and burn agriculture, urbanization, monocropping, infrastructure development (dams, transmission lines, roads), and global climate change threaten ecosystems and life on Earth. 883, 885 Continental driff 443, 444 Sex determination in reptiles 731 Prairie chickens 409, 889

Chapters/ Pa Sections N	Page Numbers Bi	ig Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
42 Ecosystems and Energy	864–881 ho Big an an tic pla	ig Idea 2: Biologi- al systems utilize ree energy and nolecular building locks to grow, to eproduce and to naintain dynamic iomeostasis ig Idea 4: Biologi- al systems interact, nd these systems nd their interac- ions possess com- lex properties	 2.A: Growth, reproduction and maintenance of the organization of living systems require free energy and matter. 2.D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system's environment. 4.A: Interactions within biological systems lead to complex properties. 	 2.A.1: All living systems require constant input of free energy. 2.A.2: Organisms capture and store free energy for use in biological processes. 2.A.3: Organisms must exchange matter with the environment to grow, reproduce and maintain organization. 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy. 	LO 2.1 [See SP 6.2] LO 2.2 [See SP 6.1] LO 2.3 [See SP 6.4] LO 2.4 [See SP 1.4, 3.1] LO 2.5 [See SP 6.2] LO 2.6 [See SP 2.2] LO 2.7 [See SP 6.2] LO 2.8 [See SP 4.1] LO 2.25 [See SP 6.2] LO 2.26 [See SP 6.2] LO 2.26 [See SP 5.1] LO 2.27 [See SP 7.1] LO 4.14 [See SP 2.2] LO 4.15 [See SP 1.4] LO 4.16 [See SP 6.4]	 Krebs cycle 139, 140, 141, 142, 143, 144, 145, 146, 147, 151, 152 Glycolysis 139, 140, 141, 142, 143, 144, 145, 146, 147 Calvin cycle 159, 163, 164, 165, 166, 167, 168, 169, 171 Fermentation 150 Endothermy (the use of thermal energy generated by metabolism to maintain homeostatic body temperatures) 644, 645, 646, 647, 648, 649, 650, 651 Ectothermy (the use of external thermal energy to help regulate and maintain body temperature) 644, 645 Seasonal reproduction in animals and plants 731 Change in the producer level can affect the number and size of other trophic levels. 499, 866, 867, 870, 872, 876 Change in energy resources levels such as sunlight can affect the number and size of the trophic levels. 499, 866, 867, 870, 872, 876 Change in energy resources levels such as sunlight can affect the number and size of the trophic levels. 866, 867, 868 NADP+ in photosynthesis 159, 164, 167, 168, 171 Oxygen in cellular respiration 125, 137, 138, 144, 157, 158, 159, 162, 164, 167, 168, 171 Cohesion 30 Adhesion 31 High specific heat capacity 31, 58 Universal solvent supports reactions 33 Heat of vaporization 31 Water's thermal conductivity 31 Root hairs 555, 562, 563, 564, 581, 584 Cells of the alveoli 703 Cells of the alveoli 703 Cells of the villi 674 Microvilli 72, 87 Gas exchange in aquatic and terrestrial plants 591, 592 Digestive mechanisms in animals such as food vacuoles, gastrovascular cavities, oneway digestive systems of aquatic and terrestrial animals 700, 701, 702, 703, 705, 706, 707 Nitrogenous waste production and elimination in aquatic and terrestrial animals 654, 655, 657, 659, 660, 661 Excretory systems in fish, amphibians and mammals 216, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 688 Thermoregulation in aquatic and terrestrial animals (counte

Chapters/ Sections	Page Numbers	Big Idea	Enduring Understanding	Essential Knowledge	Learning Objectives	Illustrative examples covered in this textbook—teach at least one
43 Global Ecology and Conservation Biology	882–905	Big Idea 1: The process of evolution drives the diversity and unity of life Big Idea 2: Biologi- cal systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Big Idea 4: Biologi- cal systems inter- act, and these systems and their interactions possess complex properties	 C: Life continues to evolve within a chang- ing environment. C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis. A: Interactions within biological systems lead to complex properties. B: Competition and cooperation are important aspects of biological systems. C: Naturally occurring diversity among and between components within biological sys- tems affects interactions with the environment. 	 1.C.1: Speciation and extinction have occurred throughout the Earth's history. 2.C.2: Organisms respond to changes in their external environments. 4.A.5: Communities are composed of populations of organisms that interact in complex ways. 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy. 4.B.3: Interactions between and within populations influence patterns of species distribution and abundance. 4.C.3: The level of variation in a population affects population dynamics. 4.C.4: The diversity of species within an ecosystem may influence the stability of the ecosystem. 	LO 1.20 [See SP 5.1] LO 1.21 [See SP 4.2] LO 2.21 [See SP 4.1] LO 4.11 [See SP 1.4, 4.1] LO 4.12 [See SP 2.2] LO 4.13 [See SP 6.4] LO 4.14 [See SP 2.2] LO 4.15 [See SP 1.4] LO 4.16 [See SP 6.4] LO 4.19 [See SP 5.2] LO 4.25 [See SP 6.1] LO 4.26 [See SP 6.4] LO 4.27 [See SP 6.4]	 Five major extinctions 447 Human impact on ecosystems and species extinction rates 549, 824, 825, 826, 827, 828, 877, 878, 879, 883, 884, 885, 886, 887, 893, 896, 897, 898, 902, 903 Photoperiodism and phototropism in plants 618, 619, 626, 627, 628, 630, 631, 632, 633 Hibernation and migration in animals 807, 842, 890 Chemotaxis in bacteria, sexual reproduc- tion in fungi 511 Nocturnal and diurnal activity: circadian rhythms 629, 771, 774, 775, 792 Predator-prey relationships spreadsheet model 528, 751, 768, 841, 848, 853, 854 Symbiotic relationship 845, 846, 850, 851 Introduction of species 549, 886 Global climate change models 898, 899 Loss of keystone species 854 Kudzu 886 Prairie chickens 409, 889